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ABSTRACT
Real-time rendering of large terrains has several important applications. Hence, many methods have been devised
to solve this problem. The main challenge for such methods is to deal with a large terrain dataset and maintain
interactive frame rates. In this paper, we propose a level-of-detail (LOD) based multi-threaded multi-context
method that works on two separate activities. Each activity is assigned to its own CPU thread and GPU context.
The LOD hierarchy is constructed on the GPU context of the errors activity and stored as a 2D texture map. This
texture map is used by the blocks rendering activity via its CPU thread to initiate the rendering process by sending
different terrain blocks as translation and scaling parameters to its GPU context, which uses a reusable single
shared vertex and index buffer to render the required block based on the passed parameters and the height-field
texture. The results show that the proposed method achieves high interactive frame rates at guaranteed very small
screen-space errors.
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1 INTRODUCTION

Terrain rendering plays an important role in computer
graphics applications such as synthetic vision systems
(SVS), game engines, 3D geographic information sys-
tems, military simulation, battle command, flight sim-
ulation and surveying. Modeling complex outdoor en-
vironments has ever been a challenge using available
computing hardware. The main problem has always
been, without losing visual details, rendering terrain
models that can be quite large requiring significant
amount of processing power and storage.

This is problematic because the renderer must process
a huge number of geometry representing the terrain ev-
ery frame to maintain interactivity. Visualizing an enor-
mous detailed terrain using brute force conventional
rendering methods where everything is rendered first
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and then the screen is clipped to the visible portion is
not currently possible at interactive frame rates.
Different methods have been devised to tackle this is-
sue. Such methods can be classified into ray-tracing
and triangulation methods. Ray-tracing methods are
image order algorithms that depend on casting a ray for
each pixel from the viewpoint through the terrain and
calculating the final pixel color based on its intersec-
tion with the terrain without actually generating terrain
geometry and as such they are not suitable for appli-
cations which use terrain geometry for other purposes
like game engines and SVS. Triangulation methods are
object order algorithms that depend on generating poly-
gons from the terrain description and simplifying them
before rendering using regular polygon rendering tech-
niques. They often use some type of multilevel hierar-
chical structure to render the geometry in different lev-
els of detail (LODs) based on a maximum level approx-
imation error.
In this paper, we propose a multi-threaded quad-tree
based triangulation method for rendering terrain com-
pletely on the GPU. All triangulation and approxima-
tion errors calculation tasks are done completely on
the GPU freeing the CPU for other application-specific
work. The terrain is divided into blocks of equal size
and triangulation is done on-the-fly by the GPU using



a single shared vertex/index buffer for every block by
varying its scaling and translation values based on its
location and level of detail cutting down GPU memory
costs to only one block of terrain.

This paper is organized as follows: Section 2 summa-
rizes related work, the proposed methodology is de-
tailed in Section 3, results are given in section 4, and
finally we conclude the paper in section 5.

2 RELATED WORK
Terrain data is commonly represented as either a Tri-
angulated Irregular Network (TIN) which is essentially
a 3D data model or a height-field. A height-field is
regularly spaced grid of elevation values. Common
height-field based methods use ray-tracing or triangu-
lation techniques.

Ray-casting techniques cast a ray for each pixel of the
output image to determine its color independently. In
[Dun79a], a ray is cast from the viewpoint through the
pixel and the 2D projection of the ray across the base
plane of the terrain grid is traced using line algorithms.
At each tracing step, the height of the ray is compared to
the height of the terrain data. When the ray height drops
below the terrain, the intersection point is found and the
input texture map is interpolated and sampled at the in-
tersection point to give the final pixel color. Cohen-Or
et al. in [Coh96b] optimized this further by using the
found intersection point of the previous ray as an ap-
proximation of the starting point forthe new ray exploit-
ing the fact that adjacent pixels have a good chance of
being also adjacent in the terrain. These methods are it-
erative in nature because each ray trace must go through
the whole process.

A run-based ray-traversal method is proposed in
[Hen04a] that accelerates this process but it doesn’t
use spatial partitioning as done in [Coh93a] which
used a quad-tree as a hierarchical data structure to
store terrain data at different LODs where each node
contains the value of its highest point. The quad-tree is
traversed recursively while the ray height is below the
highest point of a node. The ray is marched forward to
the nearest intersecting node if a leaf node cannot be
reached. Then, at a leaf node, an accurate intersection
test is done.

Other GPU based methods have been used in [Qu03a],
[Dic09a], [Luo12a] with limited hardware ray tracing
support where an intersection between the viewing ray
and the height field is calculated for each pixel on
a fragment shader. The hybrid methods proposed in
[Amm10a], [Dic10b] use ray-casting only when it actu-
ally performs better and switch back to other methods
otherwise.

These ray-casting based methods have the advantages
of concise memory requirements and steady frame rates

being an the image order algorithm. However, they are
not suitable for applications which use terrain geome-
try for other purposes like game engines and SVS. They
suffer from pixel aliasing artifacts and other graphical
glitches due to trace misses. There is also limited hard-
ware support for ray tracing and in higher resolutions,
they become too slow due to the high number of ray
traces that must be done.

Triangulation methods pre-process the terrain and
convert its height-field to polygons first and then render
them using regular polygonal rendering techniques.
The most trivial method is to generate a quad between
any four adjacent samples form the height-field and
this generates in high quality results but is extremely
slow for large terrains. LOD algorithms are devised
to pre-process the height-field before rendering and
reduce it to the least possible number of geometrical
objects to maintain very short response times. This
is done by refining and coarsening the mesh based
on pre-defined error metrics. Usually, some sort of
multi-resolution representation of terrain data fitted to
hierarchical data structures is used.

Wavelet based methods include the method used in
[Fen12a] with a variation of the Haar transform for
height-field decomposition into an intuitive multi-
resolution representation. Different LODs are obtained
by recursively averaging and differencing yielding
and an approximation and a set of detail coefficients.
The terrain representation can then be reconstructed
to any LOD by applying the reverse process on lower-
resolution versions where the simplest approximation is
a single value representing the whole terrain. Wavelets
are inherently multi-resolution data structures, have
good compression ratio, and provide efficient means
to store terrain data as the same amount of data is
needed to represent all different resolutions combined.
However, there are little benefits for using wavelets
for terrains with high frequencies including mountains
and peaks and there are considerable overhead related
to the process of restoring the various LODs from the
transform each time they are needed.

Losasso et at. in [Los04a] proposed a method which
is called the geometry clipmaps. Terrain geometry is
cached in a set of nested regular grids using a mipmap
pyramid of L levels. A square window of samples is
cached for each level. Each level is stored in a ver-
tex buffer and a normal map and as the viewer moves,
the clipmap windows are shifted and updated with new
data. Due to its uniformity, this method can achieve
steady frame rates but this also means that it is not adap-
tive as LOD selection is based only on the distance from
the viewpoint not taking into account the actual approx-
imation error introduced by this LOD. As a result, a flat
part of the terrain will always be rendered with detailed
meshes if it’s close to the viewpoint and a curved part



of the terrain will always be rendered with low detailed
meshes if it’s far from the viewpoint. This method also
needs frequent CPU-GPU communications as a vertex
buffer update must be done for every viewer motion
and an index buffer update must be done per frame and
many rendering calls have to be done per a single level
due to the way it’s designed. A GPU friendly adapta-
tion of this method is proposed in [Asi05a] where each
level is stored as an elevation map instead of a vertex
buffer and constant vertex/index buffers are used for
rendering all levels resulting in less CPU intervention
and compact terrain representation.

Yalçin et al. in [Yal11a] used a diamond-based hierar-
chy to represent terrain. The hierarchy is generated by
recursively applying the Longest Edge Bisection (LEB)
operator to the pair of triangles decomposing the terrain
height-field. Each diamond is subdivided by bisecting
both of its triangles and the hierarchy can be modeled
as a directed acyclic graph (DAG) where each resolu-
tion level is the set of diamonds at the same depth of
the graph. The diamonds central vertices directly corre-
spond to the grid points and the hierarchy is efficiently
stored on the GPU as a simple array of error values of
the same size as the original height-field. However, the
process of generating the DAG is not simple as the en-
tire terrain data set must be processed first.

Quad-trees have been used extensively for representing
terrain (see [Paj02a], [Li12a]). Quad-tree based
methods generally use a hierarchical quad-tree based
data structure that is subdivided recursively until a
pre-defined condition is met. This condition defines the
accuracy of the resulting approximation of the terrain.
If the condition is not met, the area is subdivided
again into four quadrants and each quadrant is then
re-evaluated. This allows for adaptive triangulation
where the process of subdivision stops when the
pre-defined condition is met regardless of the current
depth of the quad-tree. This is a clear advantage over
other uniform methods which could approximate the
same terrain with a much larger number of polygons.
However, this results in a variable frame rate that is
based on terrain complexity. Also, all LODs must be
available for every block of the terrain and if they are
pre-calculated, memory requirements can be high and
calculating them on-demand on the CPU introduces a
major performance bottleneck.

3 OUR APPROACH
In this section, the proposed quad-tree based method for
terrain rendering is presented. As Figure 1 shows, the
terrain is logically seen as a quad-tree with each leaf
consisting of a k× k terrain block which is the small-
est unit of geometry that will be sent to the GPU for
rendering. This method allows a single batch of geom-
etry to be used for rendering any of the terrain blocks by

(a) (b)

Figure 1: A view of a 9× 9 terrain: (a) as a mesh and
(b) as a quad-tree with k = 3 terrain blocks represented
as leaves.

varying the translation t and scaling s parameters sent to
the GPU along with the block geometry as in [Asi05a],
[Li12a]. The most detailed block has a scaling value of
one and but lower resolution blocks have greater scal-
ing values representing a larger area of the terrain with
the same geometry. This lowers the required geome-
try GPU memory to a fixed value equal to the memory
needed to represent only one block. The approximation
errors due to switching to lower LODs are calculated
entirely on the GPU and stored as a single texture. The
CPU is then used to select the appropriate LOD for each
block and to send rendering commands with the desired
LOD and the block translation/scaling parameters.

Figure 2 shows an overview of the method. It works in
two separate concurrent activities where each activity
is composed of a CPU thread with an associated GPU
context. The first activity is called the approximation
errors activity and is responsible for building the quad-
tree LOD hierarchy and the second activity is called the
blocks rendering activity and is responsible for the final
rendering process.

The approximation errors activity fits the height-field
logically into a quad-tree hierarchy representing the dif-
ferent LODs as screen-space approximation error val-
ues in pixels that result from using a lower LOD. The
calculation process is done on the GPU and the hier-
archy is physically stored as a two dimensional GPU
texture of the same size as the height-field and is then
downloaded from the GPU and stored in main mem-
ory for later access by the blocks rendering entity. As
the viewpoint changes, the approximation errors activ-
ity recalculates the error values based on the new view-
point.

The blocks rendering entity accesses the texture gener-
ated by the approximation errors activity and traverses
the represented quad-tree top-down starting from the
center point of the texture and subdividing until the
screen space error is below a pre-set threshold and then
a block rendering request is sent directly to the GPU
with the appropriate LOD scale and block translation
values.



Figure 2: A general overview of the method

The following three subsections describe the details of
this method.

3.1 Terrain Blocks

(a) (b)

Figure 3: (a) A single mesh with k = 3 in used for ren-
dering all terrain blocks of (b) a terrain with 9×9 ver-
tices. The red shaded area is of LOD 0 and is rendered
with s = 1 and t = (6,0) while the green shaded area is
of LOD 1 and is rendered with s = 2 and t = (4,4)

The basic rendering primitive of the proposed method is
the terrain block which is defined as a batch of geome-
try described by an index buffer and a vertex buffer rep-
resenting the mesh shown in Figure 3a. The mesh uses
k×k vertices and consists of 2(k−1)2 triangles where k
is a parameter defining the granularity of the algorithm.
A terrain block is rendered using a single drawing call
so choosing a large value of k means less drawing calls
but also limits the number of possible LODs and results
in more triangles representing the same terrain since the

terrain block geometry defines the minimum number of
triangles required for representing any given area of the
terrain regardless of its simplicity.
A terrain block can be translated and scaled to repre-
sent any area of the terrain at a single LOD by varying
translation and scaling parameters sent to the fragment
shader. Figure 3b shows how terrain blocks are used to
represent 2×2 areas of the terrain at the most detailed
LOD 0 using a scaling parameter of s = 1 and also to
represent 4× 4 areas of the terrain at a lower LOD 1
using a scaling parameter of s = 2. This allows sharing
the same vertex buffer and index buffer among all of
the terrain blocks covering the whole terrain and results
in very concise GPU memory requirements for storing
terrain geometry.

3.2 Approximation Errors Activity
The terrain data is represented by a height-field with
each pixel corresponding to one vertex and where the
location of the pixel defines the x and z coordinates of
the vertex and the pixel value represents the height of
that vertex as the 2D height function: y = Hx,z.
The height-field is simplified into multiple LODs by it-
eratively down-sampling to obtain lower detailed rep-
resentations of the terrain starting with LOD 0. The
number of vertices for a specific LOD is given by:
VCi = (2n−i +1)(2n−i +1) where i≥ 0 defines the LOD
level with i = 0 being the most detailed level and i = n
being the lowest detailed level and n > 1 is a value cho-
sen that defines the height-field dimension. A sample



height-map of n = 2 and its triangulation for all possi-
ble LODs are shown in Figure 4a and Figure 4b respec-
tively.
Figure 4 shows the down-sampling process for a terrain
with n = 2 from LOD 0 to LOD 2. Each iteration starts
with dividing the input height-field at a specific LOD
into groups of 3×3 vertices and dropping vertices from
each group merging adjacent groups at LOD i into only
one group at LOD i +1 and then using these groups as
the input of the next iteration until only 2× 2 vertices
are left no more groups can be formed meaning that no
further down-sampling is possible as shown in Figure
4b.

(a) (b) (c)

Figure 4: Down-sampling process for: (a) a height-field
with n=2, (b) its triangulation, (c) errors texture. Red,
green and blue colors show which vertices exist in the
different LODs 0, 1, 2 respectively from top to bottom.

Each group vertices are given the labels a,b,c,d,e,f,g,h,i
as shown in Figure 4b. Vertices with labels b,d,e,f,h
are dropped and each dropped vertex height value is in-
terpolated to a new value using two of its neighbor ver-
tices that exist at the new LOD defining the interpolated
height function given by:

IHxb,zb = Hxa,za +0.5× (Hxc,zc −Hxa,za)
IHxd ,zd = Hxa,za +0.5× (Hxg,zg −Hxa,za)

IHxe,ze = Hxa,za +0.5× (Hxi,zi −Hxa,za)
IHx f ,z f = Hxc,zc +0.5× (Hxi,zi −Hxc,zc)

IHxh,zh = Hxg,zg +0.5× (Hxi,zi −Hxg,zg)

(1)

This introduces a vertex world-space interpolation error
at each interpolated vertex and is given by WIEx,z =
Hx,z− IHx,z. This error can be projected on the screen
for the screen-space interpolation error

SIEx,z = Pro ject(Hx,z− IHx,z) (2)

The dropped vertex with the maximum vertex interpo-
lation error is taken as the overall approximation error
for the dropped vertices of this group and is given by:

OE = max(SIExb,zb ,SIExd ,zd ,SIExe,ze ,SIEx f ,z f ,SIExh,zh)
(3)

A new texture of the same dimensions as the height-
field texture is created to store the screen-space approx-
imation errors. This texture is filled progressively dur-
ing the down-sampling process starting from LOD 0
where each iteration adds more data to the texture as
shown in Figure 4c.

The group j interpolation error for LOD i can then be
calculated as the maximum of the dropped vertices er-
ror for group j at LOD i and the maximum of each
group interpolation error of the groups which formed
this group in the previous iteration at LOD i− 1. This
error can be seen as the maximum screen-space error
that can result from using the simplified version of this
group at this LOD instead of the original vertices at
LOD 0 and is stored in the errors texture at the posi-
tion of the dropped center pixel in this group labeled e
which is used again for the next iteration.

If k, l,m,n are the groups that formed the group j in
the previous iteration (if any) then group j interpolation
error for LOD i is given by:

GIEi,, j =


0 i = 0
max(OEi, j,GIEi−1,k,GIEi−1,l ,

GIEi−1,m,GIEi−1,n) i > 0
(4)

Figure 4c shows the process of filling the errors texture.
Initially, the error texture is all zeros because at LOD 0
no vertices are dropped and GIE0,, j = 0 for all groups.
At LOD 1, the four groups are merged and their GIE1,, j
value is calculated and stored at the center points which
are green shaded in the figure. At the next and last it-
eration of LOD 2, the GIE2,0 value of the single group
which were formed from the previous iteration is cal-
culated based on the previous GIE1,, j values and stored
in the center point which is blue shaded forming the fi-
nal errors texture which only has non-zero values at the
four center points of LOD 1 groups and the center point
of the single LOD 2 group.

The process of building a quad-tree of the approxima-
tion errors representing the different LODs is done us-
ing the approximation errors activity. As the viewpoint
moves, the activity CPU thread initiates the approxima-
tion errors process by iteratively sending a simple quad
to the activity offscreen GPU rendering buffer context
for each LOD starting with LOD 1 (in LOD 0, ap-
proximation errors are zero) which has been uploaded
previously with a fragment shader (see Algorithm 1)
that includes the logic of calculating screen-space errors
GIEi,, j for each group based on the height-field texture



if fragment is not a group center for LOD i then
return discard fragment

for all v in dropped vertices (b, d, e, f, h) do
Hxv,,zv = texture2D(heightField, texcoordxv,zv)
Calculate IHxv,zv , SIExv,zv (Equations 1,2)

Calculate OEi, j (Equation 3)
for all g in LOD i-1 groups (k, l, m, n) do

GIEi−1,,g = texture2D(errorsTexture,xg,yg)
Calculate GIEi,, j (Equation 4)
return GIEi,, j

Algorithm 1: Pseudocode for errors fragment shader

passed by the CPU during initialization and its own er-
rors texture from the previous iteration using the above
formulas and storing the error as the texture value of
the group center coordinates in an errors texture of the
same dimensions as the height-field.
The root value of the built quad-tree is the value of the
center point of the errors texture which is the center
point of the single group at the lowest detailed LOD
representing the overall screen-space error of using that
group for representing the terrain. Its four children are
the values of the center points of the four groups that
were originally merged to form that group and each one
of them in turn can be subdivided again into four groups
until the leafs of the quad-tree are found and they rep-
resent the original groups at LOD 0. Figure 5 shows the
built quad-tree for a terrain height-map with n = 2.

(a) (b)

Figure 5: (a) The errors texture of a height-map with
n = 2 and (b) the built quad-tree from it.

The errors texture is finally downloaded from the GPU
and stored as a 2-dimensional array on the main mem-
ory for use by the blocks rendering activity, which is de-
tailed in the next subsection, to render the terrain based
on the built quad-tree of screen-space errors.

3.3 Blocks Rendering Activity
The terrain blocks rendering activity takes as input the
quad-tree built using the approximation errors activ-
ity. The quad-tree is traversed top-down using the er-
rors texture fetched earlier from the GPU starting from
the center point which represents the screen-space er-
ror of using the just four vertices to represent the whole
terrain. Since the basic unit for rendering is the ter-
rain block mesh which consists of k× k vertices, the

actual screen-space error of using a terrain block at a
given LOD i is fetched by recursively traversing the
quad-tree top-down starting from the center point of
the terrain block until the number of leafs, which repre-
sent center points for different groups, is exactly equal
to(k−1)(k−1) and then their maximum value is taken
as the terrain block b error at LOD i and is given by
T BEi,b = max(GIEi,1,GIEi,2, . . . ,GIEi,(k−1)×(k−1))

The process starts on the CPU thread associated with
the blocks rendering activity by fetching from the quad-
tree the scree-space error of using the least detailed pos-
sible LOD n which approximates the terrain using a
single terrain block covering the whole terrain. If that
error is below a pre-set threshold value δ that defines
the maximum tolerable screen-space error, the terrain
is not subdivided and the CPU thread marks that single
terrain block to be rendered by the GPU context associ-
ated with the blocks rendering activity.

If the error is greater than δ , the quad-tree is recursively
traversed top-down one level to reach the next detailed
LOD n− 1 subdividing the terrain block into four ter-
rain blocks each located at a different quadrant of the
terrain. Screen-space errors for using the new four ter-
rain blocks are fetched and compared to δ again and if
any terrain block passes the test, it’s marked to be ren-
dered or else subdivided again into four new blocks.

This process continues until all leafs pass the screen-
space error test or a given terrain block cannot be subdi-
vided anymore because it’s already at the most detailed
LOD 0 and in which case it’s marked to be rendered
too. An intersection test is also done against the current
camera view frustum to cull invisible terrain blocks be-
fore subdividing it or marking it for rendering. The sub-
division stopping condition for a block b at LOD i can
then be formulated as T BEi,b ≤ δ where δ is a pre-set
threshold for screen-space errors in pixels.

(a) (b) (c)

Figure 6: Traversal process for (a) the errors quad-tree
and (b) its associated terrain blocks tree to reach at (c)
the final terrain blocks to send to the GPU

Figure 6 shows the quad-tree traversal process for ren-
dering a terrain with n = 2, k = 2 and δ = 5 . The traver-
sal starts with the root of the errors quad-tree in Figure
6a which is blue shaded and has the value 9. This value
is greater than the threshold δ = 5 and therefore, the
corresponding single blue shaded terrain block shown



in Figure 6b for LOD 2 cannot be used to approxi-
mate the terrain and the quad-tree is traversed to the
next level where the four green shaded terrain blocks
are evaluated for use instead of the blue shaded terrain
block. The evaluation process continues by compar-
ing the values of the four leaves of the errors quad-tree
against δ = 5. Three of the green-shaded leaves pass
the test as their values are 1,2,4 and they are less than 5
so the corresponding three terrain blocks shown in Fig-
ure 6b are used for LOD 1. However, the fourth value is
6 which is greater than 5 and as such the corresponding
terrain block is subdivided into four new terrain blocks
at LOD 0 which is the most detailed LOD. The result
is shown in Figure 6c which uses four terrain blocks at
LOD 0 (red shaded) and three terrain blocks at LOD 1
(green shaded) to render the terrain.
Each terrain block marked for rendering is sent to the
GPU context for rendering along with translation and
scaling values that define the area of terrain that is cov-
ered by it.
For each terrain block b at LOD i + 1 subdivided into
children terrain blocks c,d,e, f at LOD i, the new scal-
ing value for children blocks is given by si = 2i

k−1 and
the new translation values for them are given by:

t i,c = ti−1,b

t i,d = ti−1,b +(2i,0)

t i,e = ti−1,b +(0,2i)

t i, f = ti−1,b +(2i,2i)

(5)

where the root terrain block broot covering the whole
terrain at the least detailed LOD n has the scaling and
translation parameters sn,broot = 2n

k−1 and tn,broot = (0,0).
The rendering is done using a single shared vertex
buffer and a single index buffer that are uploaded to
the GPU once along with required vertex and fragment
shaders. These buffers define the triangulation shown
in Figure 1a using (k−1)(k−1) vertices. Each terrain
block is rendered by rendering the triangulation shown
in Figure 1a after transforming the vertices original x,z
values into final tranfromed values x′,z′ by the passed
translation and scaling parameters in a vertex shader as
follows:

x′ = x× si + ti
z′ = z× si + ti

(6)

The component y which defines the height of the vertex
is fetched on the vertex shader by sampling the height-
field which is passed to the shader as a texture at the
texture coordinates directly calculated from x′,z′ after
converting to the [0,1] range by dividing by the height-
field dimension 2n +1:

texcoordbase = (
x′

2n +1
,

z′

2n +1
) (7)

y′ = texture2D(height f ield, texcoordbase) (8)

Figure 7: The Puget Sound dataset rendered using the
proposed method in textured wire-frame mode

3.4 Terrain Texturing
Texturing the terrain is done by passing the input terrain
base texture to a fragment shader which samples it to
calculate the base pixel color cbase using the same tex-
ture coordinates texcoordbase used to sample the height-
field because the terrain base texture is of the same di-
mensions as the height-field as follows:

cbase = texture2D(basetexture, texcoordbase) (9)

A small detail texture is also passed to the fragment
shader to make up for the missing details in the base
texture due to the small pixel-to-texel ratio. The sec-
ond set of texture coordinates used for sampling the de-
tail texture is calculated as texcoorddetail = DT T F ×
texcoordbase where DT T F , the detail texture coordi-
nates tiling factor, is a factor describing the tiling prop-
erty of the detail texture. The larger this factor, the bet-
ter pixel-to-texel ratio but also the more visible tiling
repetition artifacts. The color coming from the detail
texture is then:

cdetail = texture2D(detailtexture, texcoorddetail) (10)

The fragment shader then calculates the final pixel color
c f inal by blending the values sampled from the detail
texture cdetail and the base texture cbase using:

c f inal = α× cbase +(1−α)× cdetail (11)

where α is a weight in the range [0,1] given to the color
fetched from the base texture where a value of α = 1
means that the detail texture will be ignored.

4 RESULTS
We used the Puget Sound dataset (see [Usg01a]) to test
the proposed methodology. It consists of 4097× 4097
16-bit samples with each pixel unit (0 to 65535) corre-
sponding to 0.1 meter and with inter-pixel spacing of
40 meters. The test was performed on a Linux machine
with an Intel(R) Core(TM) i5 CPU M 430 @ 2.27GHz
processor with 4GB RAM and an nVIDIA GeForce GT
330M graphics card. The parameter n = 12 is chosen to
match the dimensions of the height-field and a terrain
block is chosen to be of 33× 33 vertices which means
that k = 33.



Figure 8: A plot of the frame rate and triangles count
against the experiment time with δ = 1

The test is a fly-over above the terrain starting exactly
from the center of one edge of the terrain and flying
forward to the other edge by a speed of 3600 km/h. The
output is projected into a window of 640× 480 pixels.
Figure 8 shows a plot of the frame rate (FPS) and the
triangles count per frame at a maximum screen-space
error of δ = 1 pixel.

At the start of the test, the frame rate is 97 FPS and the
triangle count is 1198080 per frame. This is because all
of the terrain is visible and the camera is close to large
parts of it so the error for using lower LODs was larger
than δ = 1 for these parts. As the camera moves for-
ward to the center of the terrain which is clear in Figure
8 from the intersection point between the two curves,
the triangle count drops down to 300000 triangles rais-
ing the frame rate to about 200 FPS. This is expected
because half of the terrain has already been culled and
only some of the remaining visible parts need to be ren-
dered using higher LODs. At the end of the flight at the
other edge, the camera sees only a small part of the ter-
rain which explains the low triangles count and the very
high frame rate. Our method, for this test, achieved
an average frame rate of 266 frames per second and
as shown in Figure 8, it was able to reach a triangle
throughput of 97×1198080 = 120M4/sec.

For comparison with other publications work, their re-
ported results are normalized based on a public graphics
cards benchmarks database available online at [Vid14a]
and the expected results on the testing machine are
listed in Table 1 along with the actual result of the pro-
posed methodology.

Publication 4 Throughput
Feng et al. in [Fen12a] 53 M4/sec
Yalçin et al. in [Yal11a] 110 M4/sec
Asirvatham et al. in [Asi05a] 71 M4/sec
Li et al. in [Li12a] 45 M4/sec
Livny et al. in [Liv09a] 97 M4/sec
Proposed Method 120 M4/sec

Table 1: Comparison with estimated hardware normal-
ized average 4 throughput for selected publications.

The higher triangle throughput reported in [Yal11a] is
due to the large number of triangles per batch as Yalçin
et al. reported 10 frames per seconds in [Yal11a] for the
same dataset with a static mesh using a graphics card
that scored three times more than the graphics card used
for performing this test. This is expected because they
didn’t use any culling or LOD technique but focused in-
stead on allowing dynamic changes on the terrain while
rendering. This is not directly possible with our pro-
posed method.

Livny et al. in [Liv09a] reported results that are close
to the proposed method but they implemented an out-
of-core technique for handling distant patches and they
use more geometry because of the way they handle
cracks. As a result of the proposed GPU-resident quad-
tree LOD construction code, the proposed method out-
performed the method used in [Li12a] despite the fact
that the two methods use constant buffers for rendering.

From Table 1, it can be seen that the proposed method is
comparable to recent publications but unlike [Asi05a],
[Li12a] and [Fen12a] where LOD selection is based on
some distance criteria or [Liv09a] where it is based on
an arbitrary precision factor, the proposed method can
guarantee a maximum screen-space error of δ pixels.

Since all terrain blocks are rendered using a single con-
stant small mesh, the GPU memory used for geometry
is constant and is equal to the storage used by the ver-
tex buffer and the index buffer. Each vertex consists
of three 32-bit floating-point components for x,y,z of 4
bytes each and the vertex buffer consists of kxk vertices
so the total vertex buffer size is V Bsize = k×k×3×4 =
65× 65× 3× 4 = 50700 bytes. The index buffer con-
sists of 32-bit indices with every triangle defined by
three indices. The number of triangles in the mesh is
Tcount = 2(k−1)(k−1) = 8192 triangle and the indices
count is IBcount = 3×Tcount = 24576 index. Thus the
total index buffer size is IBsize = 4× IBcount = 98304
bytes.

The used GPU memory for geometry is then V Bsize +
IBsize = 149004 bytes. This shows that even very large
terrain data sets can be rendered with the same GPU
geometry memory footprint. By using texture compres-
sion for the height-field and the base texture, the GPU
texture memory could also be reduced substantially.

5 CONCLUSION
We presented a method for real-time terrain rendering
using multiple CPU threads that drive multiple GPU
contexts separately. The CPU overhead is kept mini-
mum as the GPU does most of the work. The main
contribution of this work is the novel GPU-resident er-
rors quad-tree construction process that is performed
on the GPU by a fragment shader. The CPU is then
used to download the errors quad-tree as a simple GPU
texture and use it again to drive the blocks rendering



activity GPU context by sending it only simple trans-
lation and scaling parameters per block. These param-
eters are used by a vertex shader to reconstruct the in-
tended terrain block by using a shared vertex and index
buffers and calculating the vertices height values on-
the-fly from the height-field which has been previously
uploaded as a GPU texture. This cuts down the GPU
memory requirements for storing terrain geometry as
only a constant small vertex and index buffer is stored
in addition to the height-field.

The results of the proposed method for the tested
dataset outperform similar methods when taking LOD
accuracy and frame rates into accounts. However, the
process of downloading the errors quad-tree from the
GPU as a texture is considered as a bottleneck in this
method. This can be overcome by: distributing the
process among more different frames, using only one
byte per pixel for the errors texture, and finally there
is no need to downloading the whole errors texture
as this can be done on-the-fly while traversing the
errors quad-tree by first downloading the root and then
downloading only when a subdivision is required.

In the future, we will look into improving this method
by moving the quad-tree traversal code into the GPU so
that no texture downloading is required to be done by
the CPU. We hope to fix the visual cracking and pop-
ping artifacts that result from stitching different LODs
and we will also look into dynamically splitting and
compressing the height-field and base textures to han-
dle larger terrain datasets and to cut down GPU texture
memory requirements.
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